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STUDY LOCATION AND OBJECTIVES
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METHODOLOGY
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3D STRUCTURAL MODEL, LITHOTYPE 3D MODEL
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CROSS-SECTION MAPS OF COAL SEAMg '

» Development of large scale and high
resolution 3D  structural models
depicting tectonic settings, geometry of
main structural surfaces and thickness of
particular lithological units

» Development of large scale and high
resolution 3D lithotype models driving
parametric models of petrophysical and
geomechanical properties

Lithotype 3D model of the strata between surface and 610 CS (left) and between CS 414 and 610 coal seams



3D PARAMETRIC MODEL — PETROPHYSICAL PROPERTIES
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Fig. 4.Petrophysical large scale models of the C field strata between top surface and 610 CS in the Murcki-Staszic coal mine




3D PARAMETRIC MODEL — GEOMECHANICAL PROPERTIES

Lithotype/ Young modulus Poisson ratio ucs Y d |

parameter oung modulus
Ects=1.1211%E4,n—23.15 PR:z=1.135%PRg,n—0.063 | UCS=3.3991*E.:+63.69 = i
(Xu et al, 20186) (Xu et al, 2016) (Xu et al, 2016)

Sandstone o
Estai=1.170%Egyn—24.36 PRstat=1.435%PRyyn—0.078 | UCS=1.476% Ectat+70.479

e ol {Xu et al, 2016) {Xu et al, 2016} {Xu et al, 2016}
Ect2t=0.076%v,"3.23 PR:z:=1.108*PRg,,—0.058 | UCS=1.001¢p"-1.143

Shale (Horsud, 2001) (Slota-Valim, 2015) (Chang, et al, 20086)

Based on well log data; KWK M-S archival data; WP2 data; Zhu et al., 2019; Ortuz, 1986; Jacobsen, 1942; Szott et
al., 2018; Malkowski, 2008; Godula, 1984)
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INITIAL STRESS AND STRAIN IN REGIONAL MODEL
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Parameters

Value

Fig. 4. Geomechanical large — scale

model of the C field in the

Murcki-Staszic coal mine

3D geomechanical and parametric models

mtermediate stress axis, o3 99°/11 D‘ I
minimum stress axis. o3 189°/3° I
stress ratio, R 0.17 I
———eeesteente— ———
mean fault angle + std. deviation 12.3° +£9.2°
mean friction angle, @ 29°
mean shear stress. 7 =+ std. deviation 0.31 = 0.01
shortening/extension (trend/plunge) 355°/82°

coal mine (large scale) and local models of drainage area
Determination of boundary conditions:

Stress regime: normal faulting, o, > 6,, > 6, (Zuberek et al., 1997), cH/ch= 1.25
(Jarosinski, 2005), oH azimuth = 99 deg (Dubinski et al., 2019; analysis of

damage zones in Wesola PIG-1 borehole)

Calculation of stress and strain field in initial geological conditions prior and due

to the mining activity in the large scale model

Calculation of stress and strain field in mining conditions affected by the mining

activity (large scale model)

Tab 2. Content of solids dissolved in underground water in Carboniferous productive intervals changing with depth
(based on Rozkowskiet al., 1990).

(Rozkowski et al., 1990)

Detph Average value (mg/dm3) Pressure gradient
0-200 0,100018008
200-400 0.101077029
400-600 0.104865849
600-800 0.107370556
800-1000 0.111418844



EFFECTIVE COUPLING OF FLOW AND GEOMECHANICAL SIMULATIONS

PROBLEM: Simultaneous flow and geomechanical
simulations — complex simulation modelling of very high
computational costs

CONVENTIONAL APPROACH: External coupling between
separate simulations of fluid flow evolution (pressure and
saturation distributions) and static geomechanical state
(strain and stress tensor distributions) by best available
flow and geomechanical simulators, respectively —
iterative method supplemented with correlations between
rocks transport properties and their geomechanical state
— until appropriate consistency achieved

Effectiveness of the approach, depending on the rates of
geomechanical and transport properties variations, may
result in work- and time- consuming runs

Geomechanical
model

stress tensor, o,
distribution

strain tensor, ¢,
distribution at t;,

Sclllumberger
“°1 PETREL

geological and geomechanical models
(incl. porosity, ¢, permeability, k)

Schiumberger Upgrude of Schiumberger

VISAGE transport ECLIPSE
properties

[ oo [

time evolution of pore pressure, p
and flvid saturations, S: t, > t, .,

geomechanical state, o, , variation t;_, vs. ;

iteration loop for full coupling

Flow diagram of conventional simulation coupling

Dynamical
model

pressure, p,
(and saturations, S)
distribution at t, ,



EFFECTIVE COUPLING OF FLOW AND GEOMECHANICAL SIMULATIONS
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GEOMECHANICAL EFFECTS UPON ROCK PROPERTIES

Geomechanical state variations during coal mining:
= elastic deformations due to pressure reduction — continuous variations — global (model) range — implicit simulations
= plastic deformations due to excavation activities — (model) discrete variations — local range — explicit simulations
= rock (coal) failure — (model) discrete variations — local range — explicit simulations
Effects of geomechanical state variations upon transport properties of rocks:
= porosity, ¢ (pore volume, PV) modifications due to elastic and plastic deformations
= permeability, k (transmissibility, T) modifications due to elastic and plastic deformations

= diffusion rate increase due to rock (coal) failure

EFFECTS OF CONTINOUS DEFORMATIONS EFFECTS OF DISCRETE DEFORMATIONS
Effective correlations between reservoir pressure variations (AP) and rock transport properties
(AT, APV) implicitely applied in simulation process and combined from: Step-like modifications of rock transport properties (AT, APV) explicitly

introduced into simulation process and determined from correlations

= local correlations between reservoir pressure variations (AP) and modifications of rock between the properties and geomechanical state modifications (Ae, Ac),

transport properties from geomechanical o
effects (Ag, Ao) 9

= correlations between geomechanical state variations (Ag, Ac) and rock transport properties

(AT, APV), e.g. A¢ = (XAEV . Local regions identification Local correlation: APV vs AP Durucan and Shl anISOtrOPIc mOdeI
Kozeny-Carman isotropic modelT ) /(1 b)? E: ; f//// T, = T, e~¢ X1 A0j(1-55)
L5/~ dp)? 7 .

where: N4 where:

T; = modified transmisibility in i-th main direction, & T; = modified permeability in i-th main direction,
Ty; = initial transmisibility in i~th main direction Local correfation: Asvs 4P S Local correfation: AT vs 4P Toi = initial permeability in i-th main direction,

¢ = modified porosity, ) QI ) R ] ¢ = permeability compressibility,
¢, = initial porosity, AT-gias) B sl Ao = change in effective stress in j—th main direction,
Ad = change in porosity, 4 ‘ » : o 8;; = Kronecker delta
Ae, = change in volumetric strain, S B b

o = Biot's coefficient



DISCRETIZATION OF THE SIMULATION PROCESS
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DISTRIBUTION OF STRESS TENSOR VARIATIONS (A, ii = xx, yy, zz) ALONG

VERTICAL CROSS SECTIONS AT COMPLETED EXCAVATION
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Model calibration - history matching

Calibration data: historical data of the coal production from the C lot of the 501 coal seam:

= Schedule and measurement data from the excavation and ventilation of the gate roads before the coal excavation — air
injection, total gas and methane production of the ventilation system — vs time (29.01.2018 through 31.08.2019)

= Schedule and measurement data from the C lot coal production: air injection, total gas and methane production by:
(1) ventilation system,
(2) standard methane drainage boreholes grouped into 19 clusters,
(3) directional methane drainage boreholes — vs time (01.09.2019 through 28.02.2020)

= Pressure conditions of the ventilation system and the methane drainage boreholes
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Model calibration - history matching results

00 gbsened data - directional wells
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Satisfactory agreement between the measured data at the simulation results — good
reliability of the model to correctly describe the methane drainage processes during
the coal production from the C lot of the 501 coal seam
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Comparison of simulation results for scenarios with the directional boreholes vs scenarios without the directional boreholes
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SUMMARY AND CONCLUSIONS

To assess the effectivness of the aplied drainege technology a numerical methods
coupling geomechanical and fluid flow models were used

The method proposed in the studies and comprising effectively coupled
geomechanical and dynamical simulations of reservoir region and its extension
allows to take into account impact of geomechanical effects (Ae, Ac ) upon
transport properties of reservoir rock (APV, AT ) at various considered stages
including gate road excavations, long wall movement or drilling conventional and
LRDD including continuous flow and geomechanical variations: AP — Ag, Ac —>

APV, AT

the quantitative results of those geomechanical effects depend upon detailed
properties of both geomechanical state evolution and geological characteristics of
the coal seam and surrounding strata,

the following 2 correlations are key factors when the effective transport
properties of the rock are concern:

the correlation between geomechanical state (stress and strain field) and

and rock transport properties Kozeny — Carman (isotropic model) and
Durucan and Shi (anisotropic model)

The presented results prove the effectiveness of the proposed methane drainage
with the use of the long-reach directional boreholes. In particular, the method
significantly (by ca. 52%) decreases the methane content in the ventilation gas
and notably reduces the methane content in the coal matrix of the excavated coal
seam.
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